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ON THE ST~ILITY OF THE STATIONARY NOTIONS OF SYSTEMS WITH FRICTION* 

A.V. KA!PAPETWU? 

The problem of the existence of the same stationary motians of systems 
with friction fn an infinite time interval and of the corresponding 
systems with differential constraints is discussed together with their 
Lyapunov stability. Special attention is paid to the question of the 
relationship between the stability conditions of such motions in the case 
of systems with friction when the coefficient of friction is fairly high 
and in the case of non-holonomic systems. General conditions are 
illustrated by means of examples from the dynamics of a solid on a 
horizontal plane. 

It is well-known /l-3/ that, under quite general assumptions, the motions of systems with 
friction transform in any finite interval of time into the motions of the corresponding non- 
holonomic systems as the coefficient of friction increases to infinity. The problem of the 
existence and stability of the stationary motions of the latter systems has been studied in 
detail (/4/, Chapter 4). However, the results /l-3/ do not enable one to use the theory /4/ 
to study the stability of the stationary motion of systems with friction since, as has already 
been noted, they only refer to a finite time interval while the Lyapunov stability cbaracter- 
izes tbe properties of the motion in an infinite time interval. 

1. Let us recall the fundamental results of investigations of the stability of the 
stationary motions of non-holonomic systems (/4/, Chapter 4). Everywhere subsequently, the 
indices r, s and p take the values 1, . . ..m. the indices p and v take the values m+ i,, .., 
n, the indices i and j take the values 1, . . ..k and the indices a, @,7, 6 take the values 
k + 1,. . .* m. 

Let g1;. . -, qn be the generalized coordinates of the system, let the generalized velocities . 
Ql? * * .*%I ’ be constrained by n-m non-integrable relatinships of the form 

and let @I fn d), . . .1 Q, (% $1 and T(q,q’) be the corresponding generalized forces and the 
kinetic energy of the system. Assuming, for simplicity, that the kinetic energy, generalized 
forces and the coefficients of the constraints are independent of the last n--m coordinates 
q* while the coordinates of the force QM corresponding to these coordinates are equal to 
zero, let us write down the equations of motion of the system being consi.deredintheChap1ygi.n 
form 

Here and henceforth, the subscript + denotes that the dependent velocities 911 are eliminated 
with the help of relationship (1.1) from the corresonding expression, andthefollowfng no- 
tation is adopted: 

When the conditions 
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are satisfied, Eqs.Cl.2) do not explicitly contain the coordinates CJ a and allow of stationary 
solutions of the form 

if m constants gio, qao’ 

The characteristic equation of a first-approximation system in the case of the equations 
of the perturbed motion of a non-holonomic system 11.2) in the neighbourhood of the stationary 
motion (1.4) has m-k zero roots while its remaining roots satisfy the equation 

Qf = qio3 4r’ = 0, qa* = qao 
satisfy a system of k <m equations 

01. f 2 
a, i3=r+1 

(+2 + I&!) qa’qf3’=0 

det S (h) = 0 41.61 

Here and henceforth, the zero subscript indicates that the corresponding quantity is 
calculated on the unperturbed motion. 

If the roots of (1.6) lie in the left half-plane , the unperturbed motion is stable and 
every perturbed motion sufficiently close to the unperturbed motion, tends asymptotically 
(as t-t 00) to one of the stationary motions of the form of (1.4) belonging to the manifolds 
(1.6). If, however, at least one root of equation (1.6) lies in the right half-plane, the 
unperturbed motion is unstable. 

2. Let us investigate whether stationary motions of the form (1.4), (1.5) exist subject 
to conditions (1.3) which satisfy relationships (1.1) in a mechanical system which is freed 
from the non-holonomic constraints (1.1) but subjected to the action of viscous friction 
forces derived from the Rayleigh function 

where x>O is the coefficient of friction (all quantities are assumed to be dimensionless) 
and, if such stationary motions exist, what are the conditions for their stability. 

Let us introduce the quasivelocity 

and pass from Lagrangian variables qs,...,qm, q%‘,.. .,qn’ to the mixed variables q,,...,qm, 

41,. . .,Qm, * nnt+l, . . ., 51,'. In these new variables, the equations of motion of a system with 
friction take the form 

6% = -$f- -t- Q** + 2 $2 v,mq.’ 
ti=m+l 6=1 

d aT* . 
-.== - xn, 

dt an, 

(2.2) 

Here, the superscript * denotes that the substitution (2.1) has been made in the corresponding 
expressions and the notation vlrrs is identical to that introduced above. 

Taking account of the obvious relationships 



433 

system (2.2) can be represented in th8 form 

(2.31 

It is obvious that the first m equations of system (2.3) only differ from Eqs.(1.2) in 
that there are terms contained in the square brackets which vanish when n,' = np" = 0. However, 
conditions (1.3) are now insufficient for Eq.(2.3) not to contain explicitly the coordinates 

ga and, also, stationary motions of the form of (1.4), (1.5) which satisfy (1.1) 

do not always exist but only when the supplementary relationskips 

are satisfied. 
Consequently, in the general case , the stationary motions of systems with viscous friction 

form manifolds of lower dimensionality than the stationary motions of the corresponding non- 
holonomic systems or do not exist at all (more precisely, they degenerate into equilibrium 
positions). 

3. Let us assume that the coordinates qb do not appear explicitly in the equations of 
motion of a system with friction, i.e. not only conditions (1.3) are satisfied but also the 
condition 

It is then obvious that a system with friction can execute stationary motions of the form 
of (1.4) OftheCOrr8SpOnding non-holonomic system while the m constants qio, qao* in (2.4) 
satisfy, as before, the system of k <m Eqs.(l.5) , since relationships(2.5) areautomatically 
satisfied under conditions (3.1). 

Let us now investigate the stability of th8S8 motions with respect to the variables 
. . 

Qi99f~Qcc~~~ 
. 

The characteristic equation of the system for the first approximation in the case of the 
equations for the perturbed motion of a system with friction (2.3) in the neighbourhood of the 
stationary motion (2.4) has the form 
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(6,,(h) are the elements of the matrix s&)(1.7)). 
If at least one root of Eq. (3.2) lies in the right half-plane, the stationary motion 

(2.4) is unstable. If, however, all the roots of the equation 

det A (h) = 0 (3.4) 
lie in the left half-plane, it can be shown in a similar manner to that in /4/ that the 
special case ofthecritical case of several zero roots holds and that the Lyapunov-Malkin 
theorem is valid. When this is so, the stationary motion (2.4) is stable and every perturbed 
motion sufficiently close to the unperturbed motion tends asymptotically (as t+oo) to one 
of the stationary motions of th form of (2.4) belonging to the manifold (1.5). 

Hence the question concerning the stability of the stationary motions of systems with 
friction reduces to an examination of the roots of Eq.(3.4). The question concerning the 
stability of the stationary motions of the corresponding non-holonomic systems reduces to an 
examination of the roots of (1.6) which is of lower degree than (3.4) and Eq.(3.4) therefore 
necessitates a calculation of the determinant (3.3) which is of higher order than (1.7). 

4. Let us investigate whether it is, nevertheless, possible to xeduce the examination 
of the roots of (3.4) to an investigation of the roots of Eq.fl.6) and, if this is possible, 
then under what conditions. 

by taking out x from the last n -m rows of the determinant (3.31, we reduce Eq.(3.4) 
to the form 

%n-"' [det S (1) + 0 (@)I = 0 

whence it follows that the estimate 

hh (x) = hn (CO) + 0 (x-r) (h = 1, . 1 *, 2k) (4.1) 

holds for the 2k roots of Eq.(3.41, where &,(a) are the roots of Eq.Cl.6). 
Next, by making the substitution h = xl and taking out x from the first k rows and 

columns and also from the last n-m rows of the determinant det A (xl), we reduce Eq.(3.4) 
to the form 

whence it follows that the estimate 

il, (x) = --xl, -/- 0 (1) (4.2) 

holds for the remaining n-m roots of Eq.(3.4), where 1, are the eigenvalues of the matrix 

Since W is a matrix of absolutely-positive square form, all l,>O. Consequently, for 
sufficiently large %>@, at least n-m roots (4.2) of Eq.(3.4) always have negative real 
parts and the stability of the stationary motions of systems with friction depends on the real 
parts of just 2k roots (4.1) of this equation. 

IfX>l and all the roots of Eq.(1.6) have negative real parts (at least one root of 
~q.11.6) has a positive real part), then the remaining 2k roots (4.1) of Eq.(3.4) have negative 
real parts (at least one root of Eq.(3.4) has a positive real part). If, among the roots of 
Eq.(1.6), there are roots with a zero real part and no roots with a positive real part, the 
signs of the real parts of the roots (4.1) of Eq.(3.4) depend on small additions of the order 
of ace1 when x>>l. The following assertion therefore holds. 

Assertion. A stationary motion of a holonomic mechanical system with high viscous 
friction is stable and , at the same time, asymptotically stable with respect to some of the 
variables (exponentially unstable) if the stationary motion of the corresponding non-homonomic 
system is asymptotically stable with respect to some of the variables (exponentially unstable). 

Corollary. Under the assumptions indicated above , the conditions for the stability of 
the stationary motions of holonomic systems with high viscous friction and for the correspond- 
ing non-holonomic systems are identical. 

Remark. If a stationary motion of a non-holonomic system is non-asymptotically stable 
with respect to the variables characterizing the deviation of the perturbed motions from the 
manifold of stationary motions, then the stationary motion of the corresponding holonomic 
system with viscous friction can be both stable and, in particular, asymptotically stable 
with respect to some of the variables and, also, unstable. when this is so, the conditions 
for the stability of such a stationary motion of a system with friction may be quite different 
from the stability conditions for the stationary motion of the corresponding non-holonomic 
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system. 

5. As an example, let us consider the problem of the motion of a solid along a horizontal 
plane with viscous friction which, in the case of an infinite coefficient of friction, trans- 
forms into the problem of the motion of a solid along an absolutely rough surface (/4/, Chapter 

5). 
If the mass distribution of the body and the surface bounding it are arbitrary, then, 

in the case of an infinite value for the coefficient of friction, there exists a single 
parameter family of stationary motions of the body (permanent rotations) while, for any finite 
non-zero value of the coefficient of friction, there are only exists a zero-parameter family 
(positions of equilibrium). If, however, the mass distribution of the body is such that one 
of the principal central axes of inertia is orthogonal to its surface, the body can execute 
permanent rotations around an axis which is vertically arranged to the corresponding principal 
axis with an arbitrary angular velocity both on an absolutely rough surface as well as on a 
plane with friction (in this case conditions (2.5) are automatically satisfied). 

In first case the characteristic equation of the perturbed motion has the form 

At,(b) = 0; t&(A) = j$ ‘ia4-’ 
,=a 

and, in the second case, 

nt, (h) = 0, t. oi) = i b,k’-j 
j-0 

(For explicit expressions for the coefficients ai and bj see /4, Chapter 5/). 
When the relationships 

[(J, - J1) (rz - rl) sin 26) 0 > 0 
{(J1 + J, - J,) (rl + r, - 2h) - mh (4V - 3h (rl $ r2) $ 2r,r,)) d - 

mg (Q - h) (r, - h) > 0 

((Js - J,) (Js - Ja) + mh ((la - W (rl - h) -t (Js - A) (Q - Ml •t 
m’h’ (rl - h) (r, - h)} d + mg {(Js - B) (rl - h) + (Js - A) (r, - 
h) + 2mh (rl - h) (rz ‘- h)} d + magp (rl - h) (r? - h) > 0 

(A = J, cd 6 + la sir? 6, B = Jl sin' 6 + Ja oos* 6) 

(5.1) 

are satisfied, all the roots of the equations f,(h)= 0 lie in the left half-plane. When there 
is a severe breakdown of at least one of the above-mentioned inequalities, the equation 
f,Q) = 0 has roots in the right half-plane. Consequently, if the coefficient of friction is 
sufficiently large, analogous assertions also hold for the roots of the equations f,(h)= 0. This 
has previously been shown /3/ by direct investigation of the roots of the equation f,(A)= 0. 

Here J1,JB and J,are the principal central moments of inertia of the body, m is the mass, 
g is the acceleration due to gravity, o is the angular velocity, r1 and 7, are the principal 
radii of curvature of the surface of the body at the point where it touches the supporting 
plane,6 is the angle between the principal central axis of inertia corresponding to the 
moment Jland the principal direction corresponding to the radius r,, and h is the height of 
the centre of mass. 

Hence, the conditions for the stability of the permanent rotations of a heavy asymmetric 
body on an absolutely rough horizontal plane and on a plane with high visocous friction are 
identical. In particular, the stability of the rotation of a body depends, in both cases, on 
the direction of rotation (see (5.1)). 

If, however, the body is symmetrical (Jl = JB,rl = rB), the function f,(I) only contains 
even powers of h and the equation t,(k)= 0 cannot have all roots with a negative real part. 
At the same time, f*(5), as before, contains all powers of L and the equation k(h)= 0 can 
have all roots with a negative real part. 

Hence, the stability conditions for the permanent rotations of a symmetrical solid on an 
absolutely rough surface and on a plane with friction can be substantially different and this 
difference does, in fact, occur. In the first case, the stability (instability) condition 
has the form /5/ 

(Is + mhr,)* UP - 4 (II + mh*) mg (h - rl) > 0 (< 0) (5.2) 

and, in the second case, it has the form /6/ 
(J,h - J,r,) 19 - mg (h - rl) ha/r, > 0 (< 0) (5.3) 

In particular, if the mass distribution of a top is such that J,h-J/IT,<0 (a Chinese 

top) 8 the rapid rotation of the top with the lowest of the centre of mass (h<r,) is unstable 
on a plane with friction but stable on an absolutely rough plane. 

We note that, if account is taken of the air resistance to the fall (but not to the 
rotation) of the top, the function f.(k) will again contain all powers of L and the equation 
f,(A)= 0 will have all roots with a negative real part (a root with a positive real part) 
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provided that 
IQ, + rnhr1) - (J1 + mh2)l 02 - mg (h - rl) > 0 (< (I) (,i 't) 

According to the results in paragraph 4, the inequality (5.4) also defines the stability 
condition for the rotation of a top on a plane with high viscous friction if the above- 
mentioned air resistance is taken into account in addition to the friction against the plane. 
We note that, unlikeinequality (5.3), which is valid for any value of the coefficient of 
friction not equal to zero or infinity, inequality (5.4) is only valid when the value of this 
coefficient is fairly large. In the general case, the stability of the rotation of a top on 
a plane with friction allowing for air resistance is determined by a rather cumbersome in- 
equality and depends on the ratio of the coefficients of sliding frictionandtheairresistance. 
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IMPACTS IN A SYSTEM WITH CERTAIN UNILATERAL COUPLINGS* 

A.P. IVANOV 

The characteristics of the dynamics of a system with ideal unilateral 
couplings resulting from the possibility of a simultaneous impact against 
two or more couplings are studied. 

It is shown that a correct definition of an impact impulse during 
repeated impact is only possible in exceptional cases, that is, if the 
couplings are orthogonal or theimpactis of an absolutely inelastic nature 
(in spite of the elasticity of each coupling individually). In the 
general case a percussive impulse does not possess the property of a 
continuous dependence on the initial conditions and the number of surfaces 
of discontinuity in phase space increases rapidly as the number of 
repetitions of the impact increases. In view of this, the problem of 
determining the post-impact motion in systems with a large number of 
unilateral couplings is of a stochastic nature. 

The equations of motion are regularized in the case of orthogonal 
couplings and absolutely elastic collisions. Examples are considered 
which show the effect of the geometric and elastic properties of the - - 
couplings on the motion of certain mechanical systems. 
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